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The State Space of a Pair of Spin-1/2 Particles

H. J. Kummer1

Received February 2, 1999

The state space of a quantum mechanical system consisting of more than one
particle exhibits some unusual features giving rise to interesting phenomena, such
as the Einstein±Rosen±Podolsky paradox. In order to get a feel for the structure
of such a state space, it is useful to study the spin component of a pair of
spin-1/2 particles, whose associated state space is clearly the simplest example
occurring within the context of quantum mechanical systems of more than one
particle. In a series of papers R. Horodecki et al. did just that and they found
some beautiful results, which are certainly of interest to the mathematical physicist.
In the present note, in a different context and using somewhat different methods
of proof, we rederive some of the results obtained by Horodecki. Furthermore,
using these methods we are able to prove some additional results which to our
knowledge have never been published.

1. INTRODUCTION

According to the usual axioms of quantum mechanics the spin observ-
ables are in one-to-one correspondence with the real part:

Ah : 5 {a P A ) a* 5 a} (1)

of the C*-algebra of all linear operators

A : 5 L(H ) (2)

in a finite-dimensional Hilbert space H and the set of all spin states is in

one-to-one correspondence with the set of all positive-semidefinite operators

of trace one:

S : 5 {a P Ah ) a $ 0 & trace(a) 5 1} (3)

We adopt the notation Hn , An , and Sn for the spin component of the
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Hilbert space, the C*-algebra, and the state space, respectively, of a system

consisting of n spin-1/2 particles. By Un we shall denote the unitary group of An.

In the case of a single spin-1/2 particle, the spin component of the
Hilbert space is two-dimensional, i.e., we have

H1 : 5 C2 (4)

We shall denote by {e1, e2} the standard basis for H1. A1h is the carrier

space of the adjoint representation u j adj(u): a j aua*, u P U1, a P A1h

of the unitary group U1. It decomposes into two irreducible constituents, the

identity representation spanned by the identity matrix s 0 and the representa-
tion by rotation matrices, whose carrier space is spanned by the three

Pauli matrices

s 1 5 F 0 1

1 0 G , s 2 5 F 0 2 i

i 0 G , s 3 5 F 1 0

0 2 1 G
The Pauli matrices satisfy the anticommutation relations

s i s j 1 s j s i 5 2 d ij s 0, i, j 5 1, 2, 3 (5)

The relations imply that for x, y P 53

(x ? s )(y ? s ) 1 (y ? s )(x ? s ) 5 2(x, y) s 0 (6)

Here x ? s stands for the expression

x ? s 5 (x1 s 1 1 x2 s 2 1 x3 s 3) (7)

It follows that the map

x j x ? s , x P 53 (8)

is a linear isometry of 53 onto A1h. Furthermore, to each unitary operator u
in H there corresponds a rotation R(u) of 53 via the formula

R(u)x ? s 5 u(x ? s )u* (9)

and the map u j R(u) is a homomorphism of the unitary group U1 onto the
rotation group SO(3), whose kernel is the center of U1.

Let x 5 1/2(x0 s 0 1 x ? s ) P A1h be an arbitrary self-adjoint one-particle

operator. Then trace(x) 5 x0 and det(x) 5 1/4(x 2
0 2 |x|2). Therefore x P S1

iff x0 5 1 and | x| # 1.

Thus we can state the following lemma:

Lemma 1. A one-density operator

P(x) : 5 1/2( s 0 1 x ? s ) (10)

is a one-dimensional projection in H1 (and hence an extreme point of S1),

precisely if x is a unit vector.
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Examples. The one-dimensional projections in H1 associated with 6 the

members of the standard basis (e1, e2, e3) in 53, i.e., the operators

Pi 6 : 5 P( 6 ei) 5 1/2( s 0 6 s i), i 5 1, 2, 3 (11)

will subsequently play an important role (cf. Theorem 2).

Turning now to a pair of spin-1/2 particles, the spin component of the

Hilbert space is given by the tensor product

H2 5 H1 ^ H1 (12)

Similarly the spin component of the C*-algebra is given by the tensor

product

A2 5 A1 ^ A1 (13)

The symbol ^ also stands for a bilinear map ^ : H1 3 H1 ® H2, whose

range spans H2. A vector which lies in the range of this map is called

decomposable . Given two elements a, b P A1, we can form the tensor product
a ^ b by the requirement that for all f , x P H1 the equation

(a ^ b)( f ^ x ) 5 a f ^ b x (14)

holds. In this way we construct again a bilinear map ^ , this time from A1

3 A1 into A2. Again we shall call an element in A2 of the form a ^ b, with
a, b P A1, decomposable . The assignment u j u ^ u (u P U1) defines a

faithful representation of U1 in H2 which has two irreducible constituents,

corresponding to the total spin 0 and 1, respectively, of the pair of particles,

i.e., H2 splits into an orthogonal sum

H2 5 H 0 % H 1 (15)

where H 0 is one-dimensional and spanned by the singlet state

c 0 5 1/ ! 2(e1 ^ e2 2 e2 ^ e1) (16)

and H1 is three-dimensional and spanned by the three triplet states

c 1 5 1/ ! 2(e1 ^ e1 2 e2 ^ e2)

c 2 5 1/ ! 2(e1 ^ e1 1 e2 ^ e2) (17)

c 3 5 1/ ! 2(e1 ^ e2 1 e2 ^ e1)

The basis { c 0, c 1, c 2, c 3} of H2 is adapted to the direct sum decomposi-

tion into the irreducible U1-modules H 0 and H 1. In physical literature this basis

is called the Bell basis, in honor of J. S. Bell, the discoverer of Bell’s inequality.
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Here H 0 and H 1 are eigenspaces of the square S2 of the total spin,

defined by

S2 : 5 1/21 3( s 0 ^ s 0) 1 o
3

i 5 1

( s i ^ s i) 2 (18)

More precisely, one easily verifies that for i, j 5 1, 2, 3

( s i ^ s i) c 0 5 2 c 0 (19)

and

( s i ^ s i) c j 5 ( 2 1) d ij c j (20)

For the sequel it is important to observe that A2h is a real Hilbert space

if endowed with the inner product

^ a, b & 5 trace(ab), (a, b P A2h) (21)

and that it is also the carrier space of a representation of the subgroup U1 ^
U1 , U2 defined by the formula

a j a8 5 (u1 ^ u2)a(u*1 ^ u*2 ), (a P A2h, u1, u2 P U1) (22)

A2h decomposes into an orthogonal sum of four irreducible subspaces:

A2h 5 A0 % A1 % A18 % A2 (23)

An orthogonal basis of A2h adapted to this decomposition is given by

the products

{ s 0 ^ s 0, s 0 ^ s i , s i ^ s 0, s i ^ s j ) i, j 5 1, 2, 3} (24)

Here { s 0 ^ s 0} spans A0, { s i ^ s 0 ) i 5 1, 2, 3} is a basis for A1, { s 0

^ s i ) i 5 1, 2, 3} is a basis for A18, and finally { s i ^ s j ) i, j 5 1, 2, 3} is a

basis for A2.
Equations (19) and (20) allow us to express the projection operators

Pi : 5 P c i corresponding to the members of the Bell basis in term of the

basis (24):

P0 5 1/4( s 0 ^ s 0 2 s 1 ^ s 1 2 s 2 ^ s 2 2 s 3 ^ s 3)

P1 5 1/4( s 0 ^ s 0 2 s 1 ^ s 1 1 s 2 ^ s 2 1 s 3 ^ s 3) (25)

P2 5 1/4( s 0 ^ s 0 1 s 1 ^ s 1 2 s 2 ^ s 2 1 s 3 ^ s 3)

P3 5 1/4( s 0 ^ s 0 1 s 1 ^ s 1 1 s 2 ^ s 2 2 s 3 ^ s 3)



The State Space of a Pair of Spin-1/2 Particles 1745

2. THE STRUCTURE OF THE SET OF ALL TWO-PARTICLE
DENSITY OPERATORS

In this section we shall analyze the set S2 of all density operators of a
pair of spin-l/2 particles. Any density operator r P S2, when expanded with

respect to the basis (24), yields an expression of the following form:

r 5 r (r, s, T )

: 5 1/4( s 0 ^ s 0 1 r ? s ^ s 0 1 s 0 ^ s ? s 1 o
3

i, j 5 1

tij s i ^ s j) (26)

Definition 1. The 3 3 3 matrix

T r 5 T 5 (tij) 5 ^ s i ^ s j , r &

is called the correlation matrix. Its singular values,

m 1 $ m 2 $ m 3

i.e., the eigenvalues of

[T r ] 5 (T *r T r )
1/2

are called the correlation values of r .

The significance of the correlation matrix T r is that the expectation value

of a decomposable spin observable [i.e., one whose corresponding operator

has the form (a s ^ c s )], in the state represented by r , has the simple form

« r (a, c) : 5 ^ (a s ^ c s ), r & 5 (a, T r c) (27)

Examples. From equation (25) we can read off the correlation matrices

of the projectors corresponding to the members of the Bell basis. They are

given by the following diagonal matrices:

TP0 5 diag( 2 1, 2 1, 2 1)

TP1 5 diag( 2 1, 1 1, 1 1) (28)

TP2 5 diag( 1 1, 2 1, 1 1)

TP3 5 diag( 1 1, 1 1, 2 1)

Our first problem is to characterize the convex set # of all correlation

marices. For this purpose it is useful to observe that S2 remains invariant

under the action of the group U1 ^ U1 on A2h, defined by equation (22).
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Formula (9) entails that density operators transform under this group as

follows:

r 8 : 5 (u1 ^ u2) r (s, r, T )(u*1 ^ u*2 ) 5 r (R(u1)r,R(u2)s,R(u1)TR(u2)*),

(29)

where u1, u2 P U1, from which we extract the following transformation law

for correlation matrices:

T r 8 5 R(u1)T r R(u2)* (30)

The group U1 ^ U1 induces an equivalence relation on the sets of all

density operators and correlation matrices, respectively.

Definition 2. Two density operators r , r 8 are said to be 1-equivalent (in

symbols: r 8 . r ) provided r 8 5 (u1 ^ u2) r (u*1 ^ u*2 ).

Two correlation matrices are said to be 1-equivalent (in symbols: T 8 .
T ) provided there exist rotation matrices R1, R2 such that T 8 5 R1 TR*2 .

One consequence of the transformation formula (30) is that the correla-

tion values of r are invariants under the action of the group U1 ^ U1.
Another consequence of the formula (30) is that each orbit of U1 ^ U1

in S2 contains a density operator r with a diagonal correlation matrix T r .

Thus we can state the following lemma:

Lemma 2. Given r P S2, there exists r 8 P S2 such that r 8 . r and

T r 8 5 H 1 diag( m 1, m 2, m 3) if detT r $ 0

2 diag( m 1, m 2, m 3) if detT r , 0
(31)

Remark. Observe that a necessary condition for the minus sign in equa-

tion (31) to hold is that T r and therefore [T r ] has full rank; in other words,

none of the singular values is zero.

Proof of the Lemma. By the polar decomposition theorem there exists
a rotation matrix R r such that

T r 5 H R r [T r ] if detT r $ 0

2 R r [T r ] if detT r , 0
(32)

Now let R be a rotation matrix such that

R[T r ]R* 5 diag( m 1, m 2, m 3)
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Then we have

RR*r T r R * 5 H 1 diag( m 1, m 2, m 3) if detT r $ 0

2 diag( m 1, m 2, m 3) if detT r , 0
(33)

Now let u1, u2 P U1 be such that R(u1) 5 RR*r and R(u2) 5 R. Then

r 8 5 (u1 ^ u2) r (u*1 ^ u*2 ) has the desired property. QED

The following proposition is a well-known consequence of the the Cau-

chy±Schwarz inequality:

Proposition 1. If a and c are unit vectors in 53, then

) « r (a, c) ) 5 ) (a, T r c) ) # m 1 (34)

Moreover, equality holds iff c is an eigenvector of T r belonging to the
greatest eigenvalue u1 and a is of the form Oc, where O 5 6 R r is the

orthogonal matrix occurring in a polar decomposition of T r [cf. equation (32)].

As a particular instance of inequality (34) we obtain

) tij ) # m 1 for i, j 5 1, 2, 3

The following theorem is due to Horodecki et al.(4) It characterizes the

set D of all diagonal correlation matrices.

Theorem 1. The set D of all diagonal correlation matrices considered as

a subset of the three-dimensional space of all diagonal 3 3 3 matrices
coincides with the tetrahedron with the vertices TPk [compare equations (28)].

Proof. Let 7 denote the tetrahedron with vertices TPk, k 5 0, 1, 2, 3,
within the space of all diagonal 3 3 3 matrices identified with 53. Then it

easily seen that the dual tetrahedron of 7 within 53, i.e., the set

70 5 {X ) ^ X, T & # 1 " T P 7}

coincides with 2 7, i.e, using the bipolar theorem,

7 5 ( 2 7)0 (35)

Now let r 5 r (r, s, T ) be a density operator with diagonal correlation

matrix T 5 T r 5 diag(t1, t2, t3). Then the condition that ^ r , Pk & $ 0 for k 5
0, 1, 2, 3 implies that T r belongs to ( 2 7)0. Thus we have D , ( 2 7)0. Since

on the other hand 7 , D , the conclusion follows from equation (35). QED



1748 Kummer

Remark. Note that the theorem represents 7 as the intersection of the

following four half-spaces:

t1 1 t2 1 t3 # 1

t1 2 t2 2 t3 # 1 (36)

2 t1 1 t2 2 t3 # 1

2 t1 2 t2 1 t3 # 1

Theorem 2. The set # of all correlation matrices is given by

# 5 2 convSO(3)

whereby the set of extreme points of # coincides with 2 SO(3).

Proof. The group SO(3) 3 SO(3) acts on # via the rule

(R1, R2)T 5 R1TR*2 , T P #, (R1, R2) P SO(3) 3 SO(3)

Since 2 I 5 TP0 P #, it follows that for any R P SO(3), 2 R 5 (R, I )( 2 I )

P #. Since # is convex we conclude that 2 convSO(3) , #. To show the

converse inclusion, observe that any correlation matrix T is 1-equivalent to

a diagonal correlation matrix and that by Theorem 1 a diagonal correlation
matrix clearly belongs to 2 convSO(3). That the set of extreme points of #
agrees with SO(3) follows from the obvious fact that the identity matrix cannot

be obtained as a weighted mean of two different rotation matrices. QED

Among all two-particle density operators r P S2 there are those which

correspond to states in which the spins of the two particles are classically
correlated.

Definition 3. A density operator r P S2 is said to be separable, provided
it belongs to the convex hull of the set 30 of all density operators of the

form P ^ Q where P, Q P S1 are one-dimensional projectors in H1. A

correlation matrix T P C is called separable if it is of the form T 5 T r for

some separable density operator r .

Remark. A density operator can well have a separable correlation marix

without being separable itself; see Example 1 given at the end of the paper.

Since 30 is compact, it follows from a theorem of Minkowski that the

set S 0
2 5 conv30 of all separable density operators is compact and therefore

the extreme points of S 0
2 must belong to 30. The converse is also true. Indeed

30, being a set of one-dimensional projections in H2, consists of extreme

points of S2 and therefore it certainly consists of extreme points of the subset

S 0
2.

Thus we can state the following proposition:
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Proposition 2. The set of extreme points of S 0
2 coincides with 30.

Using the expression for a one-dimensional projection in H1 given by

Lemma 1, we can easily find the form of the correlation matrix TP(x) ^ Q(y) of

an element P(x) ^ Q(y) of 30. We can state the following result:

Lemma 3. We have

P(x) ^ Q(y) 5 r (x, y, TP(x) ^ Q(y))

where

TP(x) ^ Q(y) 5 3
x1 y1 x1 y2 x1 y3

x2 y1 x2 y2 x2 y3

x3 y1 x3 y2 x3 y3 4
Let D 0 denote the set of all separable and diagonal correlation matrices.

The following theorem is also due to Horodecki et al.(4) However, their proof

differs from the one given here.

Theorem 3. As a subset of the three-dimensional space of all diagonal

3 3 3 matrices, D 0 coincides with the octahedron 2 with the vertices

TP1 1 ^ P1 6 5 diag( 6 1 0 0)

TP2 1 ^ P2 6 5 diag(0 6 1 0) (37)

TP3 1 ^ P3 6 5 diag(0 0 6 1)

whereby the projectors P i 6 , i 5 1, 2, 3, in H1 are associated with the standard

basis vectors in 53 [cf. formulas (10) and (11)].

Note that 2 is characterized by the inequality

) t1 ) 1 ) t2 ) 1 ) t3 ) # 1 (38)

Proof. Since the extreme points of 2 belong to D 0 and D 0 is convex,

we have 2 , D 0. To show the reverse inclusion, observe that if r 5 r (r, s,
T ) is a separable density operator, then also r 8 5 r ( 2 r, s, 2 T ) is a (separable)

density operator. Hence if T P D 0 is, then T P 7 ù 2 7 5 2. QED

Combining this theorem with the fact that each correlation matrix T is

1-equivalent to 6 diag( m 1, m 2, m 3), we obtain the following corollaries:

Corollary 1. A correlation matrix T is separable iff m 1 1 m 2 1 m 3 # 1.

Corollary 2. If a correlation matrix T is nonseparable, then detT , 0.
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Proof. Let D 5 6 diag( m 1, m 2, m 3) P D with D . T. If the 1 sign holds,

then the first inequality of the system (36) implies m 1 1 m 2 1 m 3 # 1 and

the correlation matrix T is separable. Thus T . D 5 2 diag( m 1, m 2, m 3) and
detT 5 detD 5 2 m 1 m 2 m 3 , 0. (Cf. Remark after Lemma 2.) QED

Remark. The condition that detT , 0 is only necessary but not sufficient

for nonseparabil ity of T. Indeed the correlation matrix T 5 2 1/3I belongs

to the octahedron 2 and therefore is separable; however, detT , 0 (see also
Example 2 at the end of the paper).

Corollary 3. Let m 1 $ m 2 $ m 3 be the three singular values of a

nonseparable correlation marix in descending order. Then

(1) m 1 1 m 2 1 m 3 . 1

(2) m 1 1 m 2 # 1 1 m 3 (39)

Conversely, given any three numbers m 1, m 2, m 3 P (0, 1] in descending order

and satisfying inequalities (1) and (2) of the Corollary, then

r 5 1/2[( m 1 1 m 2 1 m 3 2 1)P0 1 (1 1 m 1 2 m 2 2 m 3)P1 1 ^ P1 2

1 (1 2 m 1 1 m 2 2 m 3)P2 1 ^ P2 2 1 (1 2 m 1 2 m 2 1 m 3)P3 1 ^ P3 2 ] (40)

is a (nonseparable) density operator with nonseparable correlation matrix

T r 5 2 diag( m 1, m 2, m 3).

Proof. Since T r is nonseparable, it follows from Corollary 1 that its

singular values satisfy inequality (1). Furthermore, since T r . 2 diag( m 1, m 2,

m 3) P D (cf. Proof of Corollary 2), the third inequality of the system (36)
yields inequality (2) of Corollary 3. Conversely if ( m 1, m 2, m 3) is a triple of

numbers from the interval (0,1], in descending order, which satisfies the two

inequalities of Corollary 3, then r as defined by equation (40) is a density

operator and a short computation shows that its correlation matrix coincides

with 2 diag( m 1, m 2, m 3). QED

3. CLASSIFICATION OF THE SET OF PURE STATES OF A
TWO-SPIN SYSTEM

The set of all pure states of a system of two spin-1/2 particles is in one-

to-one correspondence with the set 3 of one-dimensional projections in H2.
The set 3 coincides with the set of extreme points of S2. Also note that 3
is invariant under the group U1 ^ U1. In this section we are going to describe

the orbits of 3 under the action of this group. It turns out that they can be

parametrized by a single number j varying over the interval [0, 1]. If 3 j



The State Space of a Pair of Spin-1/2 Particles 1751

denotes the orbit corresponding to j P [0, 1], then a representative of 3 j ,

whose correlation matrix is diagonal, is given by

Q( j ) : 5 1/4( s 0 ^ s 0 1 ! 1 2 j 2 ( s 1 ^ s 0) 2 ! 1 2 j 2 ( s 0 ^ s 1)

2 s 1 ^ s 1 2 j ( s 2 ^ s 2) 2 j ( s 3 ^ s 3)) (41)

Thus, in particular, Q(0) 5 P1 1 ^ P1 2 and Q(1) 5 P0. More generally,
30 consists of all decomposable projections, whereas 31 coincides with the

set of all projections of the form

P 5 r (0, 0, R) 5 1/4( s 0 ^ s 0 2 o
3

i, j 5 1
ri, j ( s i ^ s j)) (42)

where R 5 (ri, j ) P SO(3) is a rotation matrix. It follows that 30 is diffeo-

morphic to S 2 3 S 2 and 31 is diffeomorphic to the group of rotations SO(3).

For j P (0, 1), 3 j turns out to be diffeomorphic to the five-dimensional
manifold S 2 3 SO(3).

In order to arrive at all these insights, we start by characterizing the one-

dimensional projections among the general two-particle density operators.

Theorem 4. Let

r 5 r (r, s, T )

: 5 1/4 ( s 0 ^ s 0 1 r ? s ^ s 0 1 s 0 ^ s ? s 1 o
3

i, j 5 1

tij s i ^ s j) P S2 (43)

be a two-particle density operator. Then r is a one-dimensional projection
iff the following conditions are satisfied:

(1) |r|2 1 |s|2 1 trace(T*T ) 5 3.

(2) T*r 5 s & Ts 5 r.
(3) det(T )I 1 T*T 5 |s|2Es.

Here I stands for the identity matrix and Es denotes the orthogonal projector

in 53 onto the one-dimensional subspace generated by s, in case s Þ 0.

Making use of the observation that r P 3 iff r 2 5 r , the theorem

follows immediately from the following proposition, which in turn can be

verified by direct computation.

Proposition 3. Let r 5 r (r, s, T ) be as in the theorem. Then

r 2 5 1/16[(1 1 |r|2 1 |s|2 1 trace(T*T ))( s 0 ^ s 0)

1 2(r 1 Ts) ? s ^ s 0 1 s 0 ^ 2(s 1 T*r) ? s

1 2 o
3

i, j 5 1

(tij 1 ri sj 2 (adT )ji)( s i ^ s j)] (44)
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Here adT stands for the adjoint (or adjugate) matrix whose ( j, i)th entry is

the cofactor of tij.

Next we consider some consequences of conditions (1)±(3) of Theo-

rem 4.

Lemma 4. For any P P 3 the inequality

2 1 # det(TP) # 0 (45)

holds.

Proof. Condition (2) implies that

|r|2 5 (r, Ts) 5 (T*r, s) 5 |s|2 (46)

and thus condition (1) simplifies to

2|s|2 1 trace(T*T ) 5 3 (47)

Furthermore, taking the trace in condition (3) yields

detT 1 trace(T*T ) 5 |s|2 (48)

Combining these two equations leads to

det(T ) 5 |s|2 2 1 (49)

Equation (49) implies in particular that det(T ) $ 2 1. On the other hand,

condition (3) of Theorem 4 makes det(T ) . 0 impossible, since otherwise

the left-hand side of the condition would have rank 3, whereas the right hand

side has rank at most one. QED

Lemma 4 implies that if we put

j : 5 ! 2 det(T ) (50)

then j P [0, 1]. Observe that for each j P [0, 1] the set

3 j : 5 {P P 3 ) det(TP) 5 2 j 2} (51)

is invariant under U1 ^ U1. Let us look at the special cases where j 5 0
and j 5 1, respectively. If j 5 0, it follows from equation (49) that s and

therefore by equation (46) also r are unit vectors. Moreover condition (3) of

Theorem 1 becomes

T*T 5 Es (52)
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an equation which shows that in this case T is a partial isometry between

the one-dimensional subspaces of 53 generated by s and r 5 Ts. Thus we have

P 5 r (r,s,T ) : 5 P(r) ^ P(s) (53)

This argument justifies in retrospect the notation 30 for the set of all

decomposable projections which we used in Section 2.

If j 5 1, it follows from equation (49) that s 5 0. Condition (3) of

Theorem 4 then implies that T is an (improper!) orthogonal matrix and
therefore that P is of the form (42). Let us say of a projection of this kind

(and the corresponding pure state) that it is of orthogonal type. Using this

terminology, we can say that 31 comprises precisely the set of all projections

of orthogonal type. It is obvious that the group U1 ^ U1 acts transitively on

30 and on 31, i.e., 30 and 31 are orbits. The next theorem shows that this

is true for every value of j .

Theorem 5. Given any P P 3 j , P is 1-equivalent to the projection Q( j )

as defined by equation (41). Thus 3 j is an orbit under the group U1 ^ U1.

Proof. Throughout the proof we fix a particular projection P : 5 r (Ts,
s, T ) P 3 j . Since the theorem obviously holds in the case where j 5 0, 1,

we may assume that j P (0, 1). Then det(T ) 5 2 j 2 , 0 and |s| 5
! 1 2 j 2 Þ 0. Condition (2) of Theorem 4 now implies that s is an eigenvec-

tor of [T ] belonging to the eigenvalue 1. Thus the greatest correlation value

m 1 of P is 1. We assert that m 2 5 m 3 5 j . Indeed from equation (47) we obtain

1 1 m 2
2 1 m 2

3 5 trace(T*T ) 5 1 1 2 j 2 (54)

Moreover, since

! m 2
2 m 2

3 5 det (T*T )1/2 5 ) det (T ) ) 5 j 2 (55)

we see that the geometric and the arithmetic means of the numbers m 2
2, m 2

3

coincide and equal j 2 and thus both numbers must also agree with j 2.

Next observe that since det(T ) , 0, there exists a unique matrix R P
SO(3) such that

T 5 2 R [T ] (56)

It follows that

P 5 r (Ts,s, T ) 5 r ( 2 Rs,s, 2 R[T ]) . r ( 2 s, s, 2 [T ]) (57)

Now let R1 P SO(3) be such that R1[T ]R*1 5 diag(1, j , j ) 5 : D. Then

r ( 2 s,s, 2 [T ]) . r ( 2 R1s,R1s, 2 D) (58)

Since R1s must be an eigenvector of D of length ! 1 2 j 2 belonging to
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the eigenvalue 1, we conclude that R1s 5 6 ! 1 2 j 2e1. Now the rotation

matrix R1 can easily be adjusted in such a way that

R1s 5 2 ! 1 2 j 2e1 (59)

Hence

P . r ( ! 1 2 j 2e1, 2 ! 1 2 j 2e1, 2 D) 5 Q( j ) QED (60)

For j « [0, 1] we introduce the convex hull of 3 j :

S j
2 5 conv3 j

An analogous proof to the proof of Proposition 2 establishes that 3 j

comprises the set of extreme points of S j
2.

Remark. Observe that if j P (0, 1), any r P 3 j has the form

r 5 r ( ! 1 2 j 2Ru, ! 1 2 j 2u, 2 R(1±2 (1 2 j ) Ru 1 1±2 (1 1 j )I )) (61)

where u P S 2, Ru is the rotation Ru 5 2Eu 2 I, and R P SO(3). In fact the
map C j :S

2 3 SO(3) ® 3 j , defined by

(u, R) j r ( ! 1 2 j 2 Ru, ! 1 2 j 2u, 2 R(1±2 (1 2 j )Ru 1 1±2 (1 1 j )I )) (62)

is a diffeomorphi sm of S 2 3 SO(3) onto 3 j .

Finally, combining the results of Section 3 with those of Section 2, we

have the following result:

Theorem 6. The map T j r (0, 0, T ), T P #, is the inverse of the affine

map r j T r restricted to the set S 1
2. Moreover, it maps separable correlation

matrices onto separable density operators.

Proof. The affine map r ® T r , r P S 1
2, between S1

2 and # extends the
bijection P 5 r (0, 0, R) ® R, R P SO(3), between the respective sets of

extreme points and therefore is itself bijective, possessing the map T j r (0,

0, T ), T P #, as its inverse.

To show that it maps separable correlation matrices onto separable

density operators, it suffices to show that for x, y P 53, r (0, 0, Tp(x) ^ P(y)) is

separable. But

r (0, 0, TP(x) ^ P(y)) 5 1/2(P(x) ^ P(y) 1 P ( 2 x) ^ P( 2 y)) QED

We finally consider two examples. The first was put forward by Horo-

decki et al.(1)
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Example 1. Let

f 1 5 cos a (e1 ^ e1) 1 sin a (e2 ^ e2)

and

f 2 5 cos a (e1 ^ e2) 1 sin a (e2 ^ e1)

Then P f 1, P f 2, P 3 j , where j 5 ) sin 2 a ) .
For p P [0, 1] define

r 5 pP f 1 1 (1 2 p)P f 2

Then according to a necessary and sufficient condition for separability

given by Horodecki et al.,(1) r is nonseparable precisely if p Þ 1/2 and j Þ
0. But since

T p 5 3
sin 2 a 0 0

0 (1 2 2p) sin 2 a 0

0 0 2p 2 1 4
T r is separable iff

0 , ) 1 2 2p ) #
1 2 j
1 1 j

by Corollary 1; e.g., j 5 1/2 ( a 5 p /12) and p 5 1/3 yields an example of
a nonseparable density operator r whose correlation matrix is separable. In

fact the example shows that each S j
2 for j P (0, 1) contains density operators

with this property.

Example 2 (Werner(5)). Clearly a density operator r is invariant with

respect to the group U1 ^ U1 iff r is of the form

r 5 r (0, 0, l I )

By the inequalities (36), l I P # iff l P [ 2 1, 1/3]. Furthermore, by

Corollary 1 and Theorem 7, r is separable iff l P [ 2 1/3, 1/3].
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